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Investigation of the Stability of POD-Galerkin Techniques 

for Reduced Order Model Development

Cheng Huang*, William E. Anderson†, Charles L. Merkle‡

Purdue University, West Lafayette, IN, 47907

and

Venkateswaran Sankaran§

Air Force Research Laboratory (AFRL), Edwards AFB, CA, 93524

Detailed investigations are performed to analyze and mitigate the stability issues 

encountered in developing a reduced order model (ROM) for combustion response to 

specified excitations using the Euler equations. The ROM is obtained by employing 

Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of 

POD eigen-bases. Possible solutions of the ROM stability issues by changing and/or by 

scaling the equation variables are discussed following suggestions from previous Euler 

equations studies. However, our evaluations using the linearized Euler equations indicate 

that spurious unstable modes are still encountered in the resulting ROMs. Different mean 

flow and boundary conditions are implemented to further evaluate the ROMs, which 

indicate that the presence of upstream propagating characteristic waves play an important 

role in affecting ROM stability. Increasing the added artificial dissipation terms is proposed 

and shown to be an effective method that insures that the ROMs are both numerically stable 

and capable of accurately reproducing the CFD solutions.

I. Introduction

ombustion instability is a complex phenomenon that results from the coupling between the modes of heat release 

and acoustics. In practical combustor devices the complexity is greatly amplified by turbulent, compressible 

flow, very high rates of heat release, and complicated geometries and acoustic boundary conditions. Modern 

computational capability offers the potential for moving beyond the empirically-based design analysis of the past, 

* Postdoctoral Research Assistant, School of Aeronautics and Astronautics and Member AIAA.
† Professor, School of Aeronautics and Astronautics and Associate Fellow AIAA.
‡ Professor Emeritus, Member AIAA.
§ Senior Scientist, Rocket Propulsion Division and Senior Member AIAA.

“Approved for Public Release; Distribution Unlimited”

C



2

but high-fidelity simulations of full scale dynamics for engineering analysis are still out of reach. However, high 

fidelity simulations of smaller scale domains can be used to obtain reduced order models of the combustion response 

that can accurately describe the linear/nonlinear coupling between acoustics and combustion and can subsequently 

be used to analyze full-scale configurations.

The model reduction techniques have been devised to develop numerically stable and robust reduced order 

models (ROM) [1-3] and they have been applied to non-reacting flow problems including flow control [4-6] and 

unsteady aeroelasticity [7, 8]. Recent studies have extended ROMs to combustion problems [9, 10]. A preliminary 

exploration of the POD/Galerkin technique using a model reaction-advection scalar equation for developing valid 

reduced-order models was performed by Huang et al. [11], which assessed the capability of the ROM for predicting

responses at target frequencies. This work was further extended to establish ROM performance for the Euler system 

of equations [16]. 

A major focus of these previous studies focus on identifying and resolving robustness and stability issues 

associated with the ROM development. As reported, the issues can come from the inherent lack of numerical 

stability in the POD/Galerkin method itself [12], truncation of low-energy dissipative POD modes [1] and 

simplifications of higher-order equations [13]. The balanced POD technique has been proposed to build numerically 

stable ROM for linear systems [2, 14]. Bergmann et al. proposed to add residuals of the Navier-Stokes equations to 

account for the absence of low-energy dissipative POD modes [1]. Moreover, Lucia et al. [15] demonstrated the 

effectiveness of constructing stable ROM by including additional artificial dissipation terms. In addition to including 

artificial terms in building ROM, researchers have also tried to resolve the issues based on the numerical properties 

of the system equations. Barone et al [17, 18] proposed to stabilize the reduced system by symmetrizing the higher-

order PDE with a preconditioning matrix. Rowley et al. also pointed out that defining a proper inner product can be 

important when dealing with model reduction of the Navier-Stokes equations [3]. For aeroelastic applications, 

Amsallen and Farhat have shown the advantages of using the descriptor form over non-descriptor form of the 

governing equations [19].

It is important to point out that the stability issues in the above studies were generally associated with ROMs that 

were built using a partial or incomplete set of POD modes. Indeed, our previous scalar equation studies have shown 

that spurious unstable modes can be generated if an incomplete set of POD modes (100% of the energy content) is 

used to build the ROM [11]. Conversely, it was also shown that, for the scalar equation, using a complete POD set 

always insured a stable ROM [11]. However, for the vector system of Euler equations, Huang et al. identified that 

stability issues in the ROM can arise even when a complete set of POD modes is included [16]. Based on the 

knowledge above, in this paper, the stability issues that arise in the ROM development of the vector system of Euler 

equations [16] are investigated for possible causes and solutions to avoid spurious unstable modes. Again, we note

that the complete set of POD modes is used in this study to build the ROM instead of a partial set as commonly done

in reduced order development.

The remainder of the paper is organized as follows. In Section II, we present the Euler equations with a modeled 

combustion source term and the forcing function and boundary conditions used. In addition, we also present the 
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Galerkin formulation and the POD techniques for deriving reduced order models for the linearized version of the 

Euler equations. In Section III, a summary is given with regard to previous efforts to build stable ROMs by changing 

the solution variables used for the POD generation [16]. In Section IV, we describe the test problem and summarize 

the mean flow conditions used for ROM studies. In Section V, we demonstrate the existence of stability issues and 

the corresponding consequences in ROM development. We then use different mean flow and boundary conditions to 

evaluate their effects on ROM stability and draw some conclusions regarding when the stability problems occur.

Following this, we propose and test the inclusion of additional artificial dissipation to mitigate the stability issues. In 

the final section, we provide concluding remarks and suggest future directions for continued research.

II. Formulation

A. Governing equations

The governing equations are the quasi-one-dimensional unsteady Euler equations with a single-step chemical 

reaction and a specified reaction distribution,

f qt x
Q E

H H H (1)
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Here x and t are the space and time variables, is the density, u is the velocity, e is the total energy, p is the 

pressure, Yox is the oxidizer mass fraction and A = A(x) is the cross-section area of the geometry. The effects of fuel 

addition are accounted through steady source term Hf, where /f f O oxC with constant /f OC representing fuel-to-

oxidizer ratio and a sinusoidal spatial distribution is used to model the oxidizer reaction, 
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2

s
ox f ox
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x l
k Y

l l
, ( s fl x l ), where sl and fl are the axial locations of the beginning 

and end of the combustion zone. The reaction constant fk is selected to ensure that the oxidizer is consumed within 

the specified combustion zone. The unsteady combustion response is accounted in the source term, Hq, using the n-

model [20],
,p x t p x

q q n x
p x

, which relates the unsteady heat release to the pressure oscillations 

through an index, n and a time lag constant, . Here q is the integral mean combustion heat release and x is a 
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scaling function following a normal distribution,

2

2

1
exp

22

x
x . This model was previously used 

[21] to simulate combustion instability in a longitudinal rocket combustor,

For simplicity, the linearized version of Eq. (1) is used for the studies in ROM development,
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B. Boundary conditions

Fluctuating conditions inside the computational domain are obtained by specifying periodic oscillations of target 

quantities ( t ), which can be mass flow rate ( m t ), back pressure ( backp ) or the Riemann variables, about  their

mean value ( 0 ),

0 0
1

sin 2
N f

kf

t f f t
N

(3),

where f0 is the initial frequency; f represents the fundamental frequency increment and Nf is the total number of 

frequencies included in the forcing function. The fundamental period Tp is determined by f such that Tp =1/ f.

Note that if f = f0, Eq. (3) represents a standard Fourier series although herein we generally take f < f0 so that Eq. 

(3) differs from a Fourier series.

Four different boundary conditions (summarized in Table 1) are implemented to help further understand and 

identify the causes of numerical stability issues arising from the previous ROM study for the Euler equations [16].

B.C. label Upstream Downstream

Subsonic flow

1 m , 0T and oxY backp

2 Riemann invariant B.C. Non-reflecting

3 m , 0T and oxY Non-reflecting

Supersonic flow 4 0p , m , 0T and oxY /

Table 1 Summary of boundary conditions.
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C. Construction of POD eigen-bases for vector equations

POD eigen-bases are calculated based on the CFD solutions, ,p x tQ obtained from Eq. (2) using the vector-

valued method,

, ,

, ,

1 1 1, ,

, ,

ˆ ˆ,

p n p n
N N Np p p

u n u n
p n n n n n n

n n nT n T n

Y n Y nox ox

x x
x x

P x x t a t x a t a t
x x
x x

Q (4),

where n is the singular value of the nth POD mode (scalar), an(t) is the nth POD temporal mode (scalar), and the nth

eigen-mode, n(x), is an orthonormal vector function,

T 1,  if 
,  0

0,  otherwisen n
X

k n
x x dx X x L (5).

It should be noted that, unlike in the scalar equation case, to obtain reasonably scaled POD eigen-bases for the 

vector variables, a normalization matrix P(x) must be used before calculating the POD eigen-bases. Likewise, to 

reconstruct the CFD solutions using the POD eigen-bases, the matrix P(x) again needs to be included,

,

,1

1 ,

,

,

p n
N p

u n
p n

n T n

Y nox

x
x

x t P x a t
x
x

Q (6).

Different definitions of P(x) are given later. 

D. Model reduction of Euler equations

The application of the POD-Galerkin method to the linearized Euler equations (Eq. (2)) is briefly introduced here.

Additional details can be found in Ref [11]. Upon obtaining the eigen-bases as in Eq. (4), the target governing 

equation is projected onto the kth eigen-mode, k(x), throughout the whole computational domain. Before the 

projection the governing equation needs to be normalized by pre-multiplying by the matrix P(x),

T 1 T 1
, ,

,p p p
k p k p p p

X X

x t A x x t
x P x x dx x P x x D x x t dx

t x
Q Q

(7),

Substituting the POD expansion, Eq. (6) into Eq. (7) and using a numerical quadrature to approximate the integrals,
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NI
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x

(8).

Following the model reduction procedure in Ref [11] and using a consistent discretization scheme (a 2nd-order 

upwind scheme is used in both CFD and ROM) to approximate the gradient term in Eq. (8), an ODE system can be 

obtained with the contributions from boundary conditions appearing as a source term on the right-hand-side,

( )
( )

d t L t t
dt
a

a h (9),

where 
p

T

1 k Nt a t a t a ta ,

            
p

T

1 k Nt h t h t h th with contributions from boundary conditions, k kh t F t ,

L is the stiffness matrix which describes the dynamics of the reduced ODE system.

III. Background

Our previous studies with the scalar equation have demonstrated that using a complete set of POD modes is 

sufficient to insure stability in the ROM development [11]. However, perhaps surprisingly, our studies with the 

vector system of Euler equations indicate that this is no longer the case [16]. In other words, spurious unstable 

modes are encountered even when the ROM Is developed using the complete set of POD modes. In fact, this 

problem arises even for the simple problem of acoustic modes in a straight duct without combustion, which should 

be stable by definition. It has also been demonstrated in our previous study that different scaling strategies of the 

solution variables can be helpful in getting rid of the spurious unstable modes [16]. Moreover, as mentioned in the 

introduction, it has been reported by other researchers that an appropriate treatment of solution variable for the POD 

mode calculation can be useful in resolving the ROM stability issues. Therefore, the effects of different solution 

variable treatments on the ROM stability are briefly discussed in this section.

First, the scaling of temperature fluctuations (T’) is tuned through parameter, , by defining the matrix P(x) in 

Eq. (4) as,

max max max ,maxdiag 1/ ,1/ , / ,1 / oxP x p u T Y (10),

where 
max Max ,p p x t ,  0 x L and t so that the variations in each variable can be taken into account in 

relative to their maximum amplitude. As an example, CFD solutions are generated using B.C. 1 in Table 1 by 

perturbing the inlet mass flow. Two specific forcing functions are considered with 3 and 5 frequencies included. As
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in the previous studies [16], the eigen-values of stiffness matrix L in Eq. (9) are investigated to assess the numerical 

stability of the resulting ROMs. The real parts ( ) of the eigen-values are plotted against the scaling parameter, ,

for the two forcing functions in Fig. 1. It is noted that a stable ROM ( < 0) can be achieved for an appropriate value 

of the scaling parameter. However, the two cases shown here do not share a common scaling strategy that insures

stability in both ROMs, which means that the choice of scaling is problem-dependent. 

3-frequency forcing 

(1000, 1250 and 1500Hz)

5-frequency forcing 

(750, 1000, 1250, 1500 and 1750Hz)

Figure 1 The scaling effects on the eigen-values of resulting ROMs using p’, u’, T’ and Y’ox as solution 

variables (the stable region, < 0, is covered by the grey box).

As a second example, different solution variables (summarized in Table 2) from the same CFD simulation are 

selected to build the ROM. The CFD solutions are generated using the 3-frequency forcing. The set 1 in Table 2

uses the same solution variables (p’, u’, T’ and Y’ox) as in Fig. 1 and all variables are scaled to the same fluctuating 

levels ( = 1 in Eq. (10)). Set 2 uses the same scaling strategy as set 1 but instead of using temperature fluctuations 

(T’), density ( ’) is used. Set 3 follows the strategy derived by Barone et al. [17]. Their method symmetrizes the 

governing equations by pre-multiplying a matrix S and choose the solution variables as 

T

1/S oxu p YQ ,

2

0 0 0

0 0

2
0 0

0 0 0

p
S

p
p

(11),
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where is the ratio of the constant volume and constant pressure heat capacity. And then the POD modes, k , are 

calculated based upon the transformed variables 1/2

1

N p

T S k k
k

S a t xQ Q .

Case Name Variables

Set 1 p’, u’, T’ and Y’ox

Set 2 p’, u’, ’ and Y’ox

Set 3 Symmetrizing variables [17]

Table 2 Summary of solution variables used for ROM construction.

The ROM spectrum comparisons are shown in Fig. 2 for the three solution variables. The real ( ) and imaginary 

(2 f) parts of the stiffness matrix L eigen-values are plotted against each other. Unstable eigen-modes ( > 0, 

highlighted using dashed circle) can be seen using solution variables set 1 and 3 while a stable ROM can be obtained 

using set 2 variables. On the other hand, when different forcing functions are used, we find that ROM stability 

cannot be guaranteed even for set 2. Moreover, the symmetrizing variables in set 3, which was reported to be 

capable of generating stable ROMs, also seem to have stability issues here. In addition, we have also tried the 

conservative set of variables ( ’, u ’, h0-p ’ and Yox ’) following Amsallen and Farhat’s studies [19] but again, 

we find that ROM stability cannot be universally guaranteed.

Figure 2 The ROM spectra comparisons for different selections of solution variables for the 3-frequency 

forcing case (1000, 1250 and 1500Hz).
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In summary, the ways to generate POD modes, in terms of either scaling of vector variables or the selection of 

solution variables can be important in affecting the stability properties of resulting ROMs. However, it seems to be a 

difficult task to look for a universally valid method for POD mode calculation to resolve the ROM stability issues. 

Therefore, a further systematic investigation is needed to provide insights regarding possible solutions of the 

stability issues in reduced order model development.

IV. Overview of Test Problem

A constant-area duct is set up for the ROM development as shown in Fig. 3 with different boundary conditions 

summarized in Table 1. For a typical computation, the steady state numerical solution of Eq. (1) is computed first.

The upstream boundary condition is then switched to a temporally varying periodic condition as defined in Eq. (3)

and the time-accurate computation is continued until stationary conditions are reached.

Figure 3 Computational setup for the one-dimensional Euler equations.

The solutions are tabulated and stored periodically (i.e., at several time-levels within a forcing period) thereby 

generating a rectangular matrix that can be used as a database for fitting eigen-bases by means of the POD procedure 

in Eq. (4). The POD eigen-bases are then applied to the governing linear or nonlinear PDE to derive the reduced-

order ODE formulation (or ROM). In order to focus our attention on understanding the numerical stability issues 

identified in Ref [16], no combustion is included in Eq. (1) and (2) and only gas dynamics (p’, u’ and T’) are solved

in the constant-area duct. The five mean flow conditions simulated correspond to a range of Mach numbers 

summarized in Table 3.

Case # Ma Pressure, MPa Temperature, K

Subsonic

A 0.21 1 2000

B 0.46 1 1900

C 0.86 1 1670

Supersonic
D 1.87 4 2000

E 2.80 1.5 2000

Table 3 Summary of mean flow conditions.



10

V. Results

A. Baseline ROM Characteristics

Case A in Table 3 is selected as the baseline for ROM characteristics studies using B.C. 1 in Table 1. It has been

reported in previous work that the ROM stability can vary by applying different forcing functions in obtaining CFD 

solutions using the same boundary conditions [16]. Therefore, six forcing functions, from single to multiple 

frequencies, are used for ROM generation and are summarized in Table 4. The POD eigen-basis is generated using 

the vector-valued method defined in Eq. (4) and the three variables (u’, p’, and T’) are normalized by the maximum 

values of the respective fluctuating quantity throughout the whole domain (i.e. 
max max maxdiag 1/ ,1/ ,1/P x p u T

where 
max Max ,p p x t ,  0 x L and t etc.). Following the conclusion from scalar Equation studies [11],

all the meaningful (or non-zero amplitude) POD eigen-bases are used to generate the ROM corresponding in each of 

the six cases.

Case Name f0, Hz f, Hz # of forcing frequencies # of necessary POD modes

Singe-frequency

1000

-- 1 2

2-frequency 250 2 4

3-frequency 250 3 6

4-frequency 250 4 8

10-frequency 250 10 18

21-frequency 250 21 18

Table 4 Summary of cases used in studies of ROM characteristics for Case A in Table 3.

The eigen-value spectra of the ROM stiffness matrix (L in Eq. (9)) are investigated and shown in Fig. 4 for the 

six cases in Table 4. For the single-, 2- and 3-frequency forcing cases, all eigen-values are observed to have negative 

real parts ( ), which indicates that the corresponding ROMs will be stable. Solving the ROM equation for these 

three cases using the same forcing as used in the CFD solution gives reconstructed solutions that are indeed in 

excellent agreement with the CFD results as shown in Fig. 5 (top). The ROMs are able to reproduce the original 

CFD solutions and show no evidence of unphysical or unstable behavior.
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Figure 4 Eigen-value spectrum of ROM stiffness matrix for Case A in Table 3.

Single-frequency 2-frequency 3-frequency

4-frequency 10-frequency 21-frequency

Figure 5 ROM and CFD solutions comparison of Case A at x/L = 0.5 for cases in Table 4.
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The remaining three cases with multiple frequencies in the forcing function appear to be more problematic for

building stable ROMs. Unstable modes can be observed in the 4-, 10- and 21-frequency cases (highlighted by the

dashed circle in Fig. 4) even though a complete set of POD modes have been included in building the ROM. These

unstable modes leads to unphysical growth in the ROM solution as shown in Fig. 5 (bottom). With higher growth 

rate of the unstable eigenvalue, the ROM prediction is seen to go off track faster. In fact, our results suggest that the 

more diverse the frequencies are in the forcing function, the more difficulties the ROM construction can encounter.

B. Potential causes for stability issues in ROM

To further understand and identify the potential causes for the unstable modes in the ROMs observed in Fig. 5,

two major aspects are investigated in this section:

1. So far, the studies have focused on low Mach number flows (Ma < 0.3); so, we study the effects of flow 

conditions---specifically the Mach number variation---on the ROM stability characteristics. Importantly, we 

consider the difference between subsonic flow that have characteristic waves traveling in both directions and 

supersonic flow where the waves are all traveling downstream. Importantly, we note that the latter case more closely 

resembles the scalar wave equation case.  

2. Based on the knowledge from previous studies [11], we know that the stability issues do not arise in the scalar 

equation studies as long as a complete set of POD modes are included in the ROM construction. We therefore seek 

to isolate the characteristic waves contained in the Euler equations through control of the boundary conditions as 

given in Table 1. Specifically, the Riemann and non-reflective boundary conditions serve to insure that the 

characteristic waves stay decoupled, which should mimic the scalar situation pretty closely. On the other hand, the 

use of reflective boundary conditions introduces wave reflections and interactions that are unique to the vector 

system. 

The 4-frequency forcing function in Table 4 is selected as the baseline perturbation to obtain CFD solutions. The 

POD eigen-basis is generated based on the vector-valued method and the maximum values of each fluctuating 

quantities are used for normalization as mentioned in section A.

a. Effects of Mach number

The ROMs are generated based upon different conditions summarized in Table 3 from low to high Mach 

number. The ROM eigen-value spectrum for subsonic flow cases (A, B and C) is shown in Fig. 6 and it can be seen 

that for low Mach number (<0.5), unstable modes (highlighted in dashed circle) are still present while when the 

Mach number gets higher (>0.8), the resulting ROM becomes stable (negative real parts, ). The reconstructed 

ROM solutions using the 4-frequency forcing function in Table 4 are compared against the CFD solutions for Case 

B and C in Fig. 7. As expected and similar to Fig. 5, unphysical amplitude growth that is markedly different from 
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the original CFD solution is seen for Case B, while a stable ROM is obtained for Case C, which correspondingly 

reproduces the original CFD solutions excellently.

Figure 6 Eigen-value spectrum of ROM stiffness matrix for Case A, B and C (subsonic flow) in Table 3 using 

4-frequency forcing function.

Case B Case C

Figure 7 ROM and CFD solutions comparison at x/L = 0.5 for Case B (left) and C (right) in Table 3 using 4-

frequency forcing.

As it goes to supersonic flow cases (D and E), all the resulting ROMs are stable based on the eigen-value 

spectrum shown in Fig. 8 with all the real parts of eigen-values being well below zero. The observations from Figs. 

6 and 8 provide some clues as to the possible causes of the unstable eigen-modes in ROMs. As the Mach number of 

flow goes higher, the reflecting characteristic waves (or upstream traveling waves) from downstream boundary are
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weakened and, when the flow becomes supersonic, there is no wave traveling back from the downstream end. This

suggests that the ROM stability issues might be related to the simultaneous presence of  downstream and upstream 

traveling waves in the CFD solution---a situation that only arises in the subsonic Euler system (and not in supersonic 

flow or in the scalar equation case). In turn, this motivates the study in the following section that studies the effects 

of boundary conditions which are also directly related to the wave characteristics of the CFD solution.

Figure 8 Eigen-value spectrum of ROM stiffness matrix for Case D and E (supersonic flow) in Table 3 using 

4-frequency forcing function.

b. Effects of boundary conditions

Riemann invariant boundary conditions are implemented at both the upstream and downstream boundaries in 

order to eliminate wave reflections. The perturbations defined in Eq. (3) are applied for each of the characteristics 

waves individually using the 4-frequency forcing function in Table 4. By doing so, the downstream and upstream 

propagating waves are separated so that the waves do not interact. The Riemann variables correspond to propagating 

speeds, u, u+c and u-c. Three cases are considered here: 1. only u and u+c characteristic waves are perturbed while 

the downstream propagating wave (u-c) is kept unperturbed; 2. only u and u-c characteristic waves are perturbed 

while the downstream propagating wave (u+c) is kept unperturbed; and 3. all characteristic waves are perturbed.

The eigen-value spectrum of the resulting ROMs of these three cases are shown in Fig. 9. It can be readily seen that 

all ROMs are stable with negative real parts, , which confirms that as long as the waves are treated independent of 

each other, the Euler system reduces to a set of three scalar wave equations (at least in the linear limit) and the 

resulting ROM problem remains stable. 
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Figure 9 Eigen-value spectrum of ROM stiffness matrix for B.C. 2 in Table 1 using 4-frequency forcing 

function.

In the second instance, the mass flow rate is specified for upstream boundary (and forced), while a non-reflecting 

boundary condition is used downstream to eliminate wave reflections into the upstream propagating wave (u-c). The 

eigen-value spectrum of the resulting ROM for this case is shown in Fig. 10, which also does not show any unstable 

modes. This result should be contrasted with Case A in Fig. 6, which specified constant back pressure for the 

downstream boundary thereby allowing a reflected upstream-running characteristic wave. It can therefore be 

inferred that the boundary reflection of the upstream propagating wave (u-c) is a potential cause for the ROM 

stability issues.

Based on the results above, it can be concluded that the ROM stability issue arises when both considerable 

upstream and downstream propagating characteristics waves are present and mixed at the boundaries. Moreover, 

stable ROMs can be obtained in two major ways: (1) by reducing the upstream propagating wave by either 

increasing the flow Mach number or (2) by applying non-reflecting boundary conditions to avoid wave reflections.

These findings clearly confirm why the stability issues occur in the vector Euler system case and not in the scalar 

equation studies. Of course, further study is needed to understand precisely why the ROM solutions are so 

influenced by the presence of boundary wave reflections and will be undertaken as part of future work. For now, we 

examine the possibility of mitigating the stability problems by the addition of artificial dissipation terms. This 

technique was originally proposed for ROM development using an incomplete POD eigen-bases, but we use it here 

for situations wherein a complete eigen-bases is used in the ROM construction. 
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Figure 10 Eigen-value spectrum of ROM stiffness matrix for B.C. 3 in Table 1 using 4-frequency forcing 

function.

C. ROM stabilization through additional artificial dissipation

It has been shown in previous studies that a simple treatment like including additional artificial dissipation in 

building the ROM can useful to eliminate the non-physical unstable modes [15]. Here the method of including the 

artificial dissipation is briefly introduced starting with the discretized form of the linearized model equation, Eq. (2),

,
, 1/2 1/2 , ,1/2 1/2

0p i
p i i p p i p p i p i p i ii i

Q
x A Q area A Q area D Q x

t
(12),

where ix is the size of the ith cell and 1/2iarea is the left/right faces area of the ith cell. The artificial dissipation is

added at the cell faces,

1/2 1/21/21/2 1/2 1/2

Artificial Dissipations
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1 1

2 2
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p p p p p p p p pi iii i i

L R R L

p p p p p p p p pi iii i i

A Q A Q A Q A Q Q

A Q A Q A Q A Q Q
(13).

It should be noted that the artificial dissipation already exists in the original CFD solutions since we are using a 2nd-

order upwind discretization scheme (with = 1), based upon which the POD eigen-basis is calculated. To increase 

the stabilizing influence of the ROM, different values (>1) are used during the Galerkin projection step. By 

systematically varying the definition of the parameter, we can estimate how much extra artificial dissipation is

needed to stabilize the ROMs.
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Case A (4-frequency) Case A (10-frequency)

Case A (21-frequency) Case B (4-frequency)

Figure 11 Eigen-value spectrum of ROM stiffness matrix by including different amounts of artificial 

dissipation

The four cases showing unstable modes in the resulting ROMs are selected from section A and B for further 

investigation. These are Case A (4-, 10- and 21-frequency) and Case B (4-frequency). The corresponding ROM 

eigen-value spectra are shown in Fig. 11 with different amounts of artificial dissipation added. It can be readily seen 

from the spectra that including additional dissipation (increasing the value greater than unity) is able to stabilize 

the ROMs by reducing the real part ( ) of each mode while it does not materially affect the imaginary part (f) very

much. Moreover, it is also observed to have a more significant effect on the unstable modes than on the stable 

modes, which is a desired property since we do not want to alter the physically accurate eigenmodes. For cases with 

less frequency diversity in the forcing function (4-frequency), the real part of the unstable mode is reduced below 

zero when is increased up to 2.2 ~ 2.4, which means approximately twice the artificial dissipation is needed to 

generate a stable ROM. For cases with more frequency diversity in the forcing function (10- and 21-frequency), 

approximately 3 times more artificial dissipation is needed ( ~ 3.7) to stabilize the ROMs.
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Case A (4-frequency, = 2.2) Case A (10-frequency, = 3.7)

Case A (21-frequency, = 3.7) Case B (4-frequency, = 2.4)

Figure 12 ROM and CFD solutions comparison at x/L = 0.5 by including additional artificial dissipations.

The stabilized ROMs with the corresponding values are tested and validated against the CFD solutions in the 

same way as in Figs. 5 and 7. The reconstructed ROM solutions are shown in Fig. 12. All the stabilized ROMs are 

observed to predict solutions that are in excellent agreement with the CFD results. In contrast with the results in 

Figs. 5 (bottom) and 7, adding the additional amount of artificial dissipation is effective in dissipating the unphysical 

instabilities and enables the ROMs to capture the original CFD solutions very well.
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VI. Conclusions

Stability issues encountered in previous studies using the POD/Galerkin method for reduced order model (ROM) 

development of the linearized Euler equations are investigated. For simplicity, the combustion response in our 

model equation is deactivated and only the gas dynamics are calculated to obtain the POD basis vector, which are 

then used within a Galerkin formulation to reduce the governing partial differential equations to a set of ordinary 

differential equations. Efforts have been made to resolve ROM stability issues by changing and scaling the solution 

variables used in POD mode generation, which shows some success but still does notguarantee a universally stable 

method. Hence, the studies in this paper are performed on two major aspects: first, to understand and identify 

possible causes of the non-physical instability issues present in the ROM development for vector systems of 

equations; second, to test and evaluate the addition of extra artificial dissipation to mitigate the ROM stability issues.

Even though only simple flow dynamics are solved, unstable modes are still encountered in the resulting ROMs 

and the inclusion of multiple frequencies in the forcing function appears to create more difficulties in obtaining a 

stable ROM. Different mean flow Mach numbers are tested to generate the ROMs and it is found that the ROM 

stability issues improve as the Mach number gets higher. Moreover, the system becomes completely stable for 

supersonic flows, which suggests that the reduction and eventual elimination of the upstream propagating 

characteristic waves is beneficial to stability. Following that, different boundary conditions are implemented to 

control the amount of upstream propagating waves present in the CFD solution. It has been shown that stable ROMs 

can be generated by applying either non-reflecting boundary condition downstream or Riemann invariant boundary 

conditions both upstream and downstream, which indicates the important role that the upstream traveling 

characteristic waves have on the overall ROM stability. A fundamental insight is that the elimination of wave 

reflections at boundaries essentially reduces the Euler equations to a system of independent characteristic waves that 

is equivalent to multiple scalar wave equations. Indeed, it is the interaction between waves that arises in the vector 

system that is at the source of the stability issues.   

A simple solution is proposed to mitigate the instabilities by increasing the amount of artificial dissipation in the 

the Galerkin projection step. The additional dissipation is shown to have a more significant effect on the unstable 

modes, while they do not affect the stable modes very much. Thus, the stabilized ROMs prove to be able to 

reproduce the original CFD solutions with excellent agreement.

Overall, resolving stability issues identified in the ROM development for vector systems of equations remains

an importantand highly challenging task. In the present paper, significant progress has been made to identify

possible causes for spurious unstable modes in the ROM construction and the corresponding stabilization treatment.

More detailed and systematic studies are needed to understand the underlying causes of the instability and to insure 

that the proposed addition of artificial dissipation remains robust for more complicated problems.
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